
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
D 
I 
I 
I 

Fluid Mechanics and Mass Transfer in Melt Crystal 
Growth: Analysis of the Floating Zone and Vertical Bridgman 

Processes 
/' 

,: 1 

e (P 
Principal Investigator: Professor R.A. Brown 

t.3 

r": 
Summary 

Fundamental understanding of the interactions of heat and mass transport, melt flow and the 
morphology of solidification interfaces are crucial to the design and interpretation of experiments 
aimed a t  microscopically controlled solidification of crystals on earth and in space. This research 
program focuses on analyses of the transport mechanisms in solidification processes, especially one of 
interest to the Microgravity Sciences and Applications Program of NASA. Research during the last 
year has focused on analysis of the dynamics of the floating zone process for growth of small-scale 
crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in 
directional solidification, and on the dynamics of microscopic cell formation in two-dimensional 
solidification of binary alloys. The most significant findings have been: 

. 

1. 

2. 

3. 

4. 

The completion of the modification of our finite-element analysis of the thermal-capillary 
model for small-scale floating zones to include axisymmetric fluid flow in the melt driven 
by buoyancy differences, surface tension gradient and rotation of the feed and crystal rods 

Analysis of the effect of a vertically aligned applied magnetic field on buoyancy-driven 
convection and solute segregation in vertical directional solidification. Results are 
reported for specific crystal growth systems developed at  MIT and Grenoble. 

A study of the existence of a fundamental mechanism for wavelength selection in solidifi- 
cation of two-dimensional cellular interfaces from a binary melt based on large-scale 
numerical simulations has shown that steadily solidifying structures are possible for a 
continuous range  of wavelengths. This results opposed results of model calculations for 
more idealized solidification systems where mechanisms for selecting a specific wavelength 
of the microstructure seem to exist. 

The design and construction of an experimental system for the growth of two-dimensional 
microstructures is just about complete. This system is carefully designed for controlled, 
quantitative experimental measurements of interface morphologies over a range of 
operating conditions where theoretical predictions are available from our calculations. 
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Effect of Vertical Magnetic Field on Vertical Bridgman Crystal Growth 

The successful prediction of interface morphologies and segregation in crystals grown by 
directional solidification involves complete solution of the macroscopic free-boundary problems that 
describe melt and heat flow, solute transfer and the melffcrystal interface morphology with accurate 
accounting of realistic heat transfer conditions for the particular furnace design. We have designed a 
numerical simulator for this purpose based on finite-element algorithms. Calculations from the 
simulations have been compared directly with experimental measurements for galliumdoped 
germanium growth in the apparatus built by A.F. Witt and MIT.13 The agreement is remarkable, 
considering that no attempt has been made to adjust any of the thermo-physical properties. This 
work was highlighted in the 1985 annual report. In the last year we have extended the calculations 
in several ways. First we have incorporated the effect of an  imposed axial magnetic field into the 
calculations to give accurate predictions of the intensity of the field needed to yield diffusion- 
controlled crystal growth on earth; this research has been submitted for publication and is high- 
lighted below. Secondly, we have extended the finite-element simulations of directional solidification 
to include the transients associated with the batchwise nature of the system by solution of the time- 
dependent field equations and boundary conditions for the appropriate moving-boundary problem. 
The computer code for this effort is in the final stages of development and we will report in simula- 
tions and direct comparison with experiments ir. another report. 

' 

. 

In recent years, steady-state magnetic fields have been imposed in melt crystal growth of semi- 
conductor materials to control fluctuations in solute or impurity concentrations caused by chaotic 
convection in the melt. The action of the field is caused by the Lorentz force induced by the magnetic 
field when the melt has high electrical conductivity. Increasing the field strength decreases the 
intensity of cellular convection driven by buoyancy forces. Besides eliminating chaotic and time- 
periodic convection in large-scale systems sufficient intense magnetic fields decrease the intensity of 
convection to the point that the axial and lateral variation of the solute concentration in the crystal 
are d e c t e d .  The alteration of the laterally-averaged (across the melffcrystal interface) axial 
concentration of oxygen is one of the primary advantages of using magnetic fields in Czochralski 
growth of silicon. It is becoming increasingly evident that the lateral uniformity of solute profiles 
may be adversely influenced by imposed magnetic fields. 

Increasing lateral inhomogeneities by decreasing convection mixing is not unexpected. The 
transition in axial and radial solute segregation from unidirectional crystal growth in the absence of 
bulk convection to growth with intense laminar mixing is described schematically by the curves 
shown in Figure 1 in terms of the percentage radial segregation Ac, defined as the maximum 
difference in concentration across the crystal measured as  a percentage of the local a.verage, and by 
the effective segregation coefficient kendefined as 

K e f f = k < c > 1 / < < ~ > >  (1) 

where <c > I  is the laterally-averaged concentration of a solute a t  the meltlcrystal interface and 
< <c> > is the volumetrically-averaged concentration in the melt. In directional solidification, 
diffusion-controlled growth with a planar melffcrystal interface leads to uniform radial distribution 
of solutes, i.e. Ac = 0. If the melt is sufficiently long that the diffusion layer adjacent to the interface 
occupies only a small fraction of the total length, k,R is unity in the absence of bulk motion other than 
the unidirectional growth velocity V,. The length of the axial concentration gradient can be con- 
trolled, since the scale of the diffusion layer is set by the ration DN,. Curvature of the meltkrystal 
interface induces lateral solute variation caused by the focusing of the diffusion field adjacent to the 
interface. 

. 

Weak laminar convection distorts the one-dimensional concentration field and causes the radial 
and axial segregation indicated on Figure 1. When the mixing of a solute by these flow fields is in- 
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Figure 1. Schematic figure of the effect of flow intensity on the effective segregation coefficient and the percentage radial 
segregation in a directional solidification system. 

complete its concentration field adjacent to the melffcrystal interface can be highly distorted and 
large amounts of radial segregation are possible, even when the axial composition profile indicate 
diffusion-controlled growth. Harriott and Brown3 demonstrated the effect of weak convection caused 
solely by differential rotation of the feed and crystal rods on radial segregation in small-scale floating 
zones. This situation exists in well-controlled small-scale crystal growth experiments on earth, in the 
growth of nondilute binary alloys where the solute field damps convection, in microgravity experi- 
ments in which convection has not been stopped entirely, and in experiments with strong magnetic 
fields. 

Solute boundary layers form adjacent to the meltkrystal interface when laminar convection 
leads to intense mixing. Then the radial segregation of solute decreases and the composition of the 
melt approaches a new bulk value elevated (assuming k <  1) by the mixing of the solute rejected at the 
interface. In the limit of very thin solute layers k,Rapproaches k and the solute concentration 
increases steadily along the length of the growing crystal. Strong laminar convection is rarely found 
in the low Prandtl number melts of semiconductor materials. Instead time-periodic and chaotic 
transients in the melt lead to thermal transients near the interface and induce melting and 
accelerated crystal growth on the time scale for the fluctuation. 

The purpose of our work has been to present detailed calculations of the action of a magnetic 
field on convection, segregation, and heat transfer in a realistic models for the vertical Bridgman 

-29- 



crystal growth system and to quantify the intensity of the field that is necessary to achieve diffusion- 
controlled, unidirectional solidification in such systems. We have performed calculations for the fur- 
nace and ampoule designs for small-scale experiments used in the experimental studies of C.A. Wang 
(Ph.D. Thesis, MIT, 1984) and Rouzaud et al. (J .  Crystal Growth 69, p, 149,1985). The furnace of 
Wang is a classical Bridgman-Stockbarger system with isothermal hot and cold zones separated by an  
insulated region designed to create a constant axial temperature gradient in the melt and crystal ad- 
jacent to the solidification interface. The furnace of Rouzaud et al. uses a tapered heating element to 
establish a nearly linear temperature profile over a length of ampoule approximately 30 times the 
radius of the furnace. The furnaces in both systems are designed so that the crystal growth rate is 
equal to the ampoule displacement rate after an initial transient caused by the onset of ampoule 
motion. 

Detailed calculations of the temperature fields, melt flow, and axial and radial segregation 
patterns for these two furnaces were determined for growth of dilute gallium in germanium in both 
systems without the presence of the magnetic field.13 Both systems exhibited the transition from 
diffusion-controlled solute transport to laminar mixing with increasing thermal Rayleigh number. 
For the conditions of an earthbound experiment, the convection was intense, radial segregation was 
minimal, and the effective segregation coefficient approached the value of the equilibrium segrega- 
tion coefficient. In this paper we quantify the levels of imposed magnetic fields necessary to damp 
this convection to the extent that low radial segregation without axial segregation (keR- 1) is 
obtained. 

The calculation are based on the finite-element Newton methodI4.13 for the solution of conserva- 
tion equations and boundary conditions associated with the velocity, pressure, and solute fields in the 
melt, the temperature in melt, crystal and ampoule, and the shape of the meltkrystal interface. The 
extension of the method to accommodate the vertical magnetic field is trivial and has been previously 
described.17 The abstract of the paper describing the method17 follows: 

Effect of Vertical Magnetic Field on Convection and Segregation in Vertical 
Bridgman Crystal Growth, D.H. Kim, P.M. Adornato, and R.A. Brown, J. 
Crystal Growth, (submitted, 1987). 

The Petrov-Galerkidfnite-element analysis of vertical Bridgman growth for dilute and nondilute 
alloys presented before tJ. Crystal Growth EO (1986) 155) is extended to include the effect of a 
vertically-aligned magnetic field in the limit of zero magnetic Reynolds number. Calculations are 
presented fro growth of a dilute gallium-germanium alloy in a vertically stabilized Bridgman- 
Stockbarger system and in a furnace with a uniform temperature gradient imposed along the 
ampoule. Steady cellular convection driven by radial temperature gradients causes good axial 
and radial mixing in both systems without a magnetic field. A weak magnetic field decreases the 
intensity of convection and the effectiveness of solute mixing. The radial nonuniformity is 
greatest for an intermediate field strength. Stronger fields suppress flow recirculation conipletely 
and lead to uniform solute segregation across the crystal and to diffusion-controlled axial segrega- 
tion. 

Contours of the temperature, stream function (velocity) and concentration fields are shown in 
Figure 2 for the thermal Rayleigh number Rat = lxlo'without the magnetic field, Le. the Hartmann 
number is Ha = 0. The radial temperature gradients are caused primarily by the differences in the 
thermal conductivities of melt, crystal and ampoule material and are largest adjacent near the 
convex melthystal  interface. The temperature field and interface shape are essentially unaffected 
by the flow. 

The two flow cells are driven by different sets of radial temperature gradients along the ampoule 
caused by interactions between the furnace and the ampoule. The differences between the thermal 
conductivities of the melt (km = 0.39 W/K cm), the crystal (k, = 0.17 W/K cm) and the ampoule (ka = 
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Figure 2. Contours of temperature, stream function, and concentration for growth in the vertical Bridgman furnace with V, = 
4 W s e c  and Rat = 1 ~ 1 0 ~ .  Streamlines are spaced at equal intervals between the maximum (or minimum) values for 
the cells and zero. 

0.26 W/K cm) cause the meltlcrystal interface to be convex with respect to the melt and results in the 
temperature decreasing radially adjacent to this phase boundary. These gradients drive a flow that is 
up along the axis of the ampoule and down along the wall. Because of the slender shape of the melt, 
this flow is confined to a portion of the ampoule bottom that is on the order of the ampoule radius. 

The mismatch in thermal boundary conditions between the adiabatic and hot zones of the fur- 
nace causes a second set of radial gradients with the hottest temperature located at the ampoule wall. 
The upper flow cell is driven by this part of the temperature field and moves upward at the wall and 
down along the centerline. The spacing between the two flow cells is controlled by the length of the 
adiabatic zone. 

The gallium concentration field in Figure 2 shows the effects of the mixing caused by both the 
top and bottom flow cells. The radially uniform and exponentially decreasing concentration field 
expected without bulk convection is distorted in parts of the melt where either cell is strong. The 
concentration above the top of the adiabatic zone is essentially uniform because of the upper cell and 
because the diffusion layer would not penetrate into this portion of the ampoule, even at Rat = 0. 
The concentration field near the melticrystal interface is deformed by the lower cell and the first 
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stages of the formation of a region of uniform concentration are evident. Steep axial concentration 
gradients develop in the region of the ampoule between the two cells. 

The temperature field and melVcrysta1 interface for Rat = 1x107 and Ha = 0 are essentially the 
same as predicted without convection in the melt (Rat = O), mainly because of the low Prandtl 
number for the melt. Increasing Ha has essentially no effect on these variables. 

The effects of the axial magnetic field on the flow field is shown in Figure 3. Very weak fields, 

+In.. = 
1.09x 1 

e 
Ha= 100 

ea 

e 
Ha= 1000 Ha= 10000 

Figure 3. Sample flow fields for growth in the vertical Bridgrnan furnace with increasing magnetic field strength measured by 
Ha;Ra, = 1 x 10;. 

e.g. Ha = 10, decrease the strength of the flow, but leave the flow pattern unchanged. Increasing the 
field strength causes the flow cell to stretch to fill most of the ampoule, so that more of the flow is 
aligned with the field and hence unaffected by it. At Ha = 1x10' the cell has disappeared and only 
the unidirectional motion due to crystal growth remains. 

The small value of the solute diffusivity makes the solute concentration field much more sensi- 
tive to the level of convection than the temperature field. Solute fields for dilute gallium in 
germanium are shown in Figure 4, as calculated for the flows shown in Figure 3. The regions of 
approximately uniform concentration formed by mixing in the two flow cells are still apparent for Ha  
= 100. The disappearance of the lower flow cell with increasing Ha leads to the reformation of the 
exponential diffusion layer adjacent to the interface for Ha - 1x103 with weak convective mixing 
caused. only by the upper flow cell. 

The percentage radial segregation Ac is plotted in Figure 5 as a function of Rat and Ha for V, = 
4 p d s .  The maximum in Ac occurs for approximately Rat = 1x106. The value of Rat for the maximum 
radial segregation increases as the intensity of the field is increased. For Ha > L 1x103 Ac is caused 
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Figure 4. Sample gallium concentration fields for growth of GaCe in vertical Bridgman system with V, = Qpdsec  as a function 
ofHa; Rat = 1x10;. 
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Ra, 
Figure 5. Percentage radial segregation as a function of thermal Rayleigh number and Hartmann number for growth of GaGe 

in the vertical Bridgman system with Vg = 4 pdsec .  The solid dot corresponds to experimental measurements of 
Wang.17 
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only the curvature of the meltisolid interface up to Rat = 1x10'. calculations a t  higher values of Rat 
were not possible with the finite element mesh used here because.of the formation of the boundary. 
The experimental measurement of Wang also is shown; Adornato et al.13 explained how to extrap- 
olate the numerical calculations to get reasonable agreement with these measurements by using 
boundary-layer theory for describing the dependence of Ac on Rat. 

The variation of the axial segregation of solute can be estimated from the calculations with the 
PSSM by computing the effective segregation coefficient defined by Equation (1). These values are 
plotted in Figure 6 as a function of Rat and Ha. The value of keRfor low convection (Rat - 0) is not 
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Figure 6. Effective segregation coefficient computed from equation 1 as a function of Rat and Ha for growth in vertical 

Bridgman furnace with V, = 4 pdsec. The solid dot correpsonds to the experimental measurement of Wang. 

unity because the ampoule is not long enough for the variation in concentration caused by the 
dmusion layer to be small relative to the portion of the melt which is a t  the bulk concentration (c = 
1). The increased mixing caused by convection and the decrease in kefftowards the equilibrium value 
(k = 0.087) are obvious. Increasing the magnetic field strength increases the effective segregation 
coefficient, shifting the critical value of Rat for the beginning of the decrease in k,Rto higher values. 
The experimental measurement of Wang without a magnetic field is again shown for reference. 

Direct comparison between these calculations and experiments with strong magnetic fields are 
underway. The experimental data is being supplied by Prof. A.F. Witt through research also funded 
by NASA. 

Microscopic Modelling of Pattern Formation in Two-Dimensional 
Solidification 

Morphological stability theory describes the mechanisms for a smooth solidification front 
separating a binary melt form its solid to develop undulations that lead to cellular and dendritic 
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structures on the microscale. Although the onset of morphological pattern formation is well under- 
stood from linear stability theory pioneered by Mullins and Sekerka, the transitions to deep cellular 
and dendritic structures are not. Our theoretical and experimental program is aimed a t  this goal for 
two-dimensional, thin-film solidification experiments where quantitative experiments are possible. 

We have developed asymptotic and numerical methods aimed specifically a t  analysis of pattern 
formation in two-dimensional solidification experiments. The development of these techniques is dis- 
cussed in a number of our publi‘cationss* 16. The results from several recent publication are discussed 
in the following section on the theoretical analysis of two-dimensional solidification. Our research 
program has expanded from a purely theoretical and computational effort to the development of a 
precise experimental system for studies of two-dimensional solidification, as analyzed by our calcula- 
tions. This system was developed during this year of NASA support and is outlined in the section 
entitled “Experimental System”. 

Theoretical Analysis of Two-Dimensional Solidification 

Analysis in the previous year has focussed on two aspects of microscopic pattern formation in 
two-dimensional solidification. First, is an explanation for the lack of experimental observation of 
the spatial wavelength for small-amplitude cells predicted by linear stability theory, as reported by a 
number of experiments in recent years. The second issue is the transition to deep cellular patterns 
and the possibility of a mechanism for selection of a specific spatial wavelength from the large range 
of linearly unstable ones. Each of these issues is discussed in the review paper abstracted below: 

“Numerical Analysis of Cellular Solidification Microstructures,” R.A. Brown, 
N, Ramprasad, M.J. Bennett, Supercomputers in Chemistry and Chemical 
Engineering ACS Symposium, eds. K .  Jensen and D. Truhlar (ACS, 1987). 

Largescale numerical calculations are usedto simulate the formation ofcellular 
microstructures during directional solidification of a binary alloy. The analyses are based on 
finite-element methods developed especially for solving the free- and moving-boundary problems 
that describe the solute field in melt and solid and the meltlsolid interface shape in the Solutal 
Model of microscopic solidification. Calculations are reported for individual cells that show the 
transitions from steady-state solidification of shallow cells bear the onset of morphological 
instability to deep cells separated by narrow grooves as  seen in experiments. Simulations with 
multiple cells show the importance of nonlinear interactions between shapes with resonant 
spatial structures in determining the time-dependent dynamics of large collections of cells. The 
results of cellular dynamics calculations fro multiple cells show the possibility of long time-scale 
time-periodic and quasi-periodic interactions. 

Analysis of nonlinear transitions in shallow and deep, two-dimensional cells are discussed 
separately below. 

Nonlinear transition for shallow cells 

The key feature of directional solidification systems which leads to the complex nonlinear inter- 
actions seen experimentally is the flatness of the small surface energy associated with the melthrys- 
tal interface. Since the surface energy is the sole effect which stabilizes a planar interface against 
short wavelength instabilities, the resulting neutral stability curve for the onset of cellular growth is 
extremely flat. This is seen in Figure 7, for a set of thermophysical properties similar to PbSn, except 
that the solute diffusivity in melt and solid is taken to be the same. Note that approximately the 
same value of the growth rate VJA) leads to instability for a band of wavelengths which stretches over 
an order-of-magnitude. This flatness of the neutral stability curve leads to nonlinear interactions 
between spatial resonant values of the wavelength lower than the critical value predicted by linear 
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Figure 7. Neutral stability curve predicted from linear analysis for values of the thermophysical properties appropriate for 
PbSn. buth with equal diffusirities in melt and solid. 

theory, as observed in the experiments. The theoretical development of this observation is given in 
the reference below along with detailed nonlinear calculations: 

“Nonlinear Interactions of Interface Structures of Differing Wavelength in 
Directional Solidification,” M.J.  Bennett, R.A. Brown, and L.H. Ungar, 
Proceedings of the International Symposium on the Physics of Structure 
Formation Springer-Verlag, 1987). 

The solution structure of the cellular patterns formed during the directional mlidification 
of a material containing a dilute impurity is studied by numerical analysis of a simple model. 
Solution families corresponding to cells of different spatial wavelength arise as the growth 
velocity is increased above the value for the onset of the instability. The resonant interaction 
between these steady-state shapes leads to both stable and unstable time-periodic oscillations. 
Only some of the oscillatory interface structurescomputed have been predicted by normal mode 
analysis of dimension-two bifurcations. The interactions between cells with different spatial 
structure8 limit the range of validity of asymptotic expansions to a velocity range too small to be 
reliably measured experimentally. 

The nonlinear transitions caused by these codimension-two bifurcations are demonstrated in 
Figure 8 by calculations of cells with specific wavelengths as  a function of the dimensionless growth 
rate P= VUD, where D is the solute diffusivity. The thermophysical properties for these calucations 
are the same as used in the calculation of the neutral stability curve, Figure 7; the sample size hc=4.5 
correpsonds to the most unstable wavelength predicted from this figure. Nonlinear cell shapes with 
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Figure 6. Families of steady-state shapes computed as  a function of increasing growth rate Pin a A$ sample size. 

this wavelength evolve from the critical value P = P,(A) predicted by linear theory. Two secondary 
bifurcation points are computed for P < 2P, (A,) which reduce the wavelength of the computed cell 
shape to AJ4. The amplitude of the cells is represented by the dimensionless cell depth defined as  

I A =  AIA (2) 

where A is the dimensional value and A is the dimensional cell wavelength. Representative cell 
shapes are shown in Fig. 9 to demonstrate the steepening of the cell shape with increasing Peclet 
number. Calculations with the Monge interface representation were stopped because of the 
possibility that the interface would become reentrant, signifying that the solid melts and then 
resolidifies in the groove. 

Figure 9 shows interface shapes computed using this representation with fixed wavelength A = 
1 and increasing P. The long cells have a distinct three-region structure with a rounded tip, a long 
sidewall and a small bottom. Increasing he Peclet number lengthens the sidewall relative to the 
other regions, and suggests an asymptotic structure. 

We feel that the dynamics of wavelength selection for shallow cellular interface structures is 
best described as a statistical average of the dynamical behavior of a collection of cells over a long 
time. We are pursuing this approach through cellular dynamics calculations. 

Wavelength Selection in Large-Amplitude Cells with Finite Depth 

The calculations discussed above lead to the conclusion that no mechanism exists for selection of 
a specific spatial wavelength for shallow cells near the onset of pattern formation. To test for the 
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Figure 9. Sample interface shapes for increasing P and A = 1 .O as  computed with the method 
described by Ungar and Brown.6 

existence of a mechanism for wavelength selection calculations for relatively deep cell. The abstract 
of the paper based on these calculations is given below. 

"Wavelength Dependence of Cells of Finite Depth in Directional Solidifica- 
tion," N. Ramprasad, M.J.  Bennett, and R.A. Brown, Phys. Rev. A. (sub- 
mitted, 1987). 

Finite element calculations are presented for individual shapes in a spatially period pat- 
tern of two-dimensional cellular interfaces that occur during the directional solidification of a 
binary alloy. The transition from shallow sinusoidal cellular shapes to cells separated by deep 
grooves is computed as a function of the spatial wavelength of the paUern as the growth rate is 
increased. The flatness of the neutral stability curve is responsible for secondary bifurcations that 
result from nearby codimension-two critical points. Tip splitting ofthe cells results and the 
apparent wavelength decreases by multiples oftwo from the value predicted by linear stability 
theory. Deep cells with rounded tips, linear sidewalls and pendent shaped bottoms are computed 
for a -of spatial wavelengths and growth rates. so that no mechanism for singling out dis- 
crete wavelengths is apparent. A wavelength corresponding to the cell with maximum depth is 
predicted as a function of the growth rate. 

Figure 10 shows these calculations. The velocity is constant along each curve and is reported as a 
multiple of the critical value for the most dangerous wavelength VcC&). Along each curve G and P 
decrease and r increases as  A is lowered. An important feature is that for each growth rate there is a 
deepest cell and this cell occurs for a decreasing value of the wavelength with increasing growth rate. 
For growth rates as low at (1.9) Vc(hc) this maximum occurs at wavelengths less than 1, = I, compared 
to A, = 4.5. This is not unexpected, because the wavelength splitting mechanisms demonstrated in 
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Figure 10. Dependence of cell depth on wavelength for specific values of growth rate P and other parameters held fixed. 

Figure 10, indicate rapid transitions to shorter wavelengths. Deepcells (A > 2) are computed within 
an  increasingly narrower band of spatial wavelengths as the growth rate increases. This is an 
important observation because it gives evidence that some wavelength selection toward smaller 
values of A does occur when the transitions from shallow cells to ones separated by deep grooves is 
considered. 19 

Sample cell shapes for varying wavelengths along the curves with the highest growth rate are 
shown in Figure 11 rescaled so the lateral dimension of each cell varies between zero and one. The top 
and bottom of the cell shape for the shortest wavelength (1 l a )  are extremely rounded, showing the 
dominant influence of surface energy in these regions. Calculations cannot be continued to lower 
values of A using the mixed cylindricakartesian representation.19 As the cell lengthens with 
increasing A, a long sidewall or groove forms that separates the tip from the bottom. The interface 
shape and the axial variation of the concentration field are linear along the sidewall, showing that 
the contributions from the temperature field and the liquidus curve dominate the Gibbd'homson 
equation and that surface energy contributions are unimportant in this region. The cell bottoms are 
self-similar with increasing A, but decrease in size relative to A, because the capillary constant 
decreases proportional to A. 

The calculations for a single deep cell, but with a bottom suggests that adequate modelling of the 
dynamics of real cells probably must account for more detail of the cellular structure than is currently 
being considered in studies of idealized problems. Because of the finite length of these structures, the 
small surface energy seems to be controlling the length of the cell and selection of the wavelength 
through interactions that involve the matching of regions of the shape, like the tip and the sidewall 
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Figure 11 .  Cell shapes for representative calculations from Figure 10 and the highest growth rate. The letters for these 
shapes correpsond to the points shown on Figure 10. the wavelengths have been normalized so that the aspect 
ratio of the cells. measured as A. can be compared directly. 

where it is relatively unimportant with the highly curved cell bottom. There is some hope that this 
structure can be captured by asymptotic analysis for simple solidification models; large-scale calcula- 
tions are playing an  important role in developing such a theory. A similar relationship may exist 
between the shapes of the tip and the sidebranching along a freely growing dendrite in directional 
solidification. 

Experimental System 

We have developed a quantitative thin-film solidification experimental system using the 
succinonitrile-acetone system, video imaging, digitization, and statistical data analysis to provide the 
framework for direct comparison with the calculations described above. The experiments differ from 
those performed previously in several important ways which will remove the ambiguities from the 
measurements: 

a.  Care is taken to control the pull rate within 1% of the critical value!. 

b. A long sample is used to insure that transients have decayed and that 
there is ample time for statistically meaningful data acquisition. 

c. The video imaging system will lead to quantitative date on both the local 
cell shape and statistics on the cell front. 

A. Solidification System 

The solidification system designed for this experiment consists of long glass plabs held in place 
by a metal support, as  shown in Figure 12. The alloy is loaded into the sample through fill ports at . 

either end. The sample is attached to a translating stage (Control Technics Corporation) which is sur- 
rounded by a thermal environment constructed from hot and cold water baths separated by a nearly 
adiabatic region. The sample can be translated through the temperature field at rates between 1 and 
100 p d s  at a n  accuracy of f 0.1 p d s ,  as set by the accuracy of the translation device. Although this 
accuracy is far better than previous experiments, it is not sufficient to support growth rates as low as 
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Figure 12. Schematic of proposed thin-film solidification system: (a)  total system and (b) sample holder. 

1.0 p d s ,  as have been use previously where significant nonlinear interactions along the front are 
predicted to occur P less than 5% beyond Pc. We plan to use lower concentrations and higher growth 
rates so that the growth velocity can be control accurately enough to distinguish the nonlinear 
transitions. 

The sample optical microscope is mounted to the lateral component of the translation stage so 
that the entire solidification front can be traversed. The translation system and furnace have been 
sized so that a sample 100 cm long can be accommodated. This length is necessary for comparison 
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with the long time scale evolution of shallow and deep cells predicted by the dynamical calculations to 
date and to gather time-dependent statistics for making quantitative measurements of possible 
chaotic interactions. 

- 6 0.1 

I I 

B. Alloys 

Initial experiments will be conducted using the succinonitrile-acetone alloy. We have chosen 
this system because its thermophysical properties are extremely well characterized a n  because the 
alloy is chemically stable for long time periods. We plan to purchase the succinonitrile from Prof. 
Glicksman a t  RPI. Marginal stability curves for this alloy are shown in Figure 13 as a function of the 

succinonitrile-acetone 
C = 67 'K/cm 

1 o2 

loo ' 

lo-* - 

. 

Figure 13. Neutral mbil i ty  curves for auccinonitrile-acetone system as a function of acetone concentration for fixed 
temperature gradient of 67'/cm. 

acetone concentration. By decreasing the acetone concentration; to 0.01-0.05 mole %, the growth rate 
a t  the onset of instability can be increased to over 10 p d s  and the range of unstable wavelengths can 
be decreased significantly; compare the lateral extent of the curves for decreasing concentration. We 
expect the number of interacting wavelengths to decrease with decreasing concentration, so that  
steady-state forms are easier to obtain. 

The need purity of succinonitrile is attainable by a combination of vacuum distillation and zone 
refining, as outline by Huang and Glicksman (Acta Metall. 29, p. 701,1981). Purities of up to 
99.9999% have been reported by these authors. Introduction of impurities during the loading of the 
sample will be avoided by hermetically joining the purification apparatus with the sample holder. 
The acetone will be added during the filling of the sample. 
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C. Data Acquisition and Analysis 

A CCD camera fitted to a microscope with a 5-5Ox objectives is used to gathe video images of the 
cellular interface, with approximately ten cells being viewed. Video images of the cellular front from 
the CCD camera are to be simultaneously recorder with a video recorder and processed through a 
Recognition Technologies Inc. (RTl) image processing system. This system will be configured to per- 
form edge enhancement and recognition of up to 30 gray scale images (512x512 pixels) per second 
using software provided with the system. Because we expect the microstructure to evolve slowly in 
time (the growth of one wavelength of interface will take about 60 seconds), the RTI system should 
supply amble computational power for simultaneous analysis of the cellular structure within four 
laterally adjacent view ports for the objective, as controlled by the lateral translation of the stage, so 
that the dynamic interactions of approximately forty cells can be monitored. 

Data in the form of the spatial locations of points along the interface will be passed into a n  IBM 
AT computer for storage and post-processing. The computer also controls the growth rate of the Sam- 
ple and the lateral location of the microscope objective. The data will be analyzed in several ways: 

1. The meltholid interface will be reconstructed and compared to the stored 
video images. This numerical form of the experimental data can be used 
for comparison with the asymptotic and numerical analyses described 
above. 

2. Statistical information about the time evolution of the microstructure 
will be develop[ed by performing Fourier analysis on the interface 
shaped and computing correlation functions as a function of time. Soft- 
ware is available from RTI for these purposes. Simple quantities like the 
spatially-average wavelength as  a function of time will be available as a 
result of this analysis. The correlation functions will give a direct indi- 
cation of whether the interpretation of this average as a unique wave- 
length for the microstructure is meaningful. 

Analysis of Small-scale Floating Zone Systems 

The reduced gravity environment of an experiment in space helps overcome considerable limita- 
tions to the floating zone process for growth of single crystals that exist on earth and make the study 
of this system of considerable importance to NASA's microgravity program. We have developed a 
detailed thermal-capillary model of the transport phenomena and interfacial phenomena important 
in small-scale floating zone systems. A schematic of this system is shown in Figure 14. Here a cylin- 
drical rod of polycrystalline material is melted and resolidified into a single crystal by using a short 
circumferential radiative heater that translates slowly along the axis of the rod. The molten zone 
forms between the crystal and the feed rods and is held in place by surface tension. Its size is 
governed by heat transfer and limited by instabilities that have been assumed to originate at the 
meniscus. The radius of the rod is limited by the interaction of gravity with the shape of the meniscus 
and with heat transfer. We have developed a thermal-capillary model that accounts for these 
couplings and so can predicted operating conditions for small-scale floating zones. The model has 
been developed in two steps Figure 14 shows a schematic of a small-scale floating zone heater by a 
source with a Gaussian distribution. 

First, a conductiondominated model was described18 that included the effects of the couplings 
between heat transfer and zone shape, but neglected convection in the so that the major heat transfer 
mechanisms modelled were conduction in each phase and radiation between melt and solid and the 
surroundings. Numerical solution of the free-boundary problem which describes the temperature 
field in each phase, the shapes of the two meltlsolid interfaces and the meniscus has been by a 
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Figure 14. Schematic of small-scale floating zone system. 

1 1  
vs I 

Galerkin finite-element method combined with Newton iteration which simultaneously compute 
corrections for all these variables. The development of this model, the numerical method and 
predictions for small-scale.silicon zones were described in a previous publication. 12 

Research in the last year has focussed on extending the analysis to include a description of fluid 
flow in the melt driven by buoyancy forces, surface tension gradients and rotation of the feed and 
crystal rods. The step is necessary to allow prediction of operating states for larger scale zones and 

mechanism for heat transfer. 
t materials with high Prandtl numbers, e.g. oxides, where convection in the melt is a n  important 

Incorporation of the fluid mechanics of the melt into the analysis has been straightforward, but 
tedious task. A mixed finite-element approximation to the velocity and pressure fields in the melt 
have been added along with Galerkin approximations to the momentum equation with the 
Boussinesq approximation and to the condition for incompressibility. These additional equation have 
been incorporated directlyinto the Newton iteration used in the conduction-dominated thermal- 
capillary model. The size of the matrix problem that must be solved at every Newton iteration has 
increased enormously; 2000 variables are typical for the conductiondominated model, whereas 
25,000 are needed for accurate approximations that include realistic flow in the melt. To do this has 
required the development of an  out-of-core equation solver especially for the structures matrices that 
arise in application of Newton’s method to free-boundary problems. 

The testing of the finite-element code for solution of the thermal-capillary model with convec- 
tion is just complete and simulations of specific growth systems, e.g. silicon, are underway. These 
results, as well as the development of the finite-element technique, will be reported later. This report 
only includes one example of calculations with this program to demonstrate the intensity of 
convection in even small-scale floating zones. 
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The flow fields appropriate for surface-tension driven flows in a self-consistent model of a 1 cm. 
radius silicon floating zone is shown in Figure 15 as a function of the Marangoni number, which is de- 

L L 

Figure 15. Stream function representation of flow patterns driven by surface-tension gradients for a small-scale silicon 
floating zone: ( a )  Ma - 100 and (b) Ma - lx104. 

fined here as Ma = (au/dT)T,R/ap; values close to 1x106 are appropriate for silicon. The shape of the 
meniscus has been idealized in these calculations as  a cylinder by setting the gravitational acceler- 
ation to zero and the wetting angle between the melt and crystal to 90’. The stream function contours 
plotted in Figure 15 show the importance of momentum convection in determining the flow pattern. 
The two cell flow pattern predicted by asymptotic analysis for a zone with heat supplied by a Gaus- 
sian source and for low Ma is only correct in that parameter region. Inertia causes the lower cell to 
compress the upper one against the melting feed rod giving the distorted patterns seen for higher Ma. 
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